Heißdampf

[135] Heißdampf (superheated steam; vapeur surchauffée; vapore surriscaldato). Wird gesättigter Wasserdampf vom Wasser getrennt und weiter erwärmt, so entsteht ein gasförmiger Körper, der bei weiterer Zuführung von Wärme (Überhitzung) die Eigenschaften eines permanenten Gases annimmt und in seinen Folgeerscheinungen annähernd als permanentes Gas betrachtet werden kann. Die Überhitzung erfolgt im Überhitzer. Überhitzter Dampf, der um 100° C und mehr über seine Sättigungstemperatur erhitzt ist (hochüberhitzter Dampf), wird als Heißdampf bezeichnet. Das Volumen überhitzten Dampfes nimmt bei abnehmender Dichte nahezu gleichmäßig mit der Überhitzungstemperatur zu (s. Dampfarbeit).

Vom Naßdampf unterscheidet sich der H. durch sein spezifisches Volumen, sein Wärmeleitungsvermögen und seinen Wärmewert.

Beim gesättigten Dampf wird das spezifische Volumen (d.i. das Volumen, das die Gewichtseinheit des Dampfes einnimmt) bei wachsender Temperatur und Spannung kleiner, bei überhitztem Dampf nimmt es nahezu gleichmäßig mit der absoluten Temperatur T zu, so daß ein bestimmtes Volumen H. entsprechend weniger wiegt wie das gleiche Volumen Naßdampf. Nach Zeuner besteht für überhitzten Dampf die allgemeine Zustandsgleichung


pv = RT – C∜p, ... 1,

wobei R = 0∙0509, C = 0∙193,

p = Druck in kg/cm2,

v = spezifischess Volumen in m3,

T = absolute Temperatur = 273 + t°.


Für höhere Überhitzung nähert sich diese Formel der allgemeinen Zustandsgleichung für Gase


p v = RT.


Nach Formel 1 beträgt z.B. für 12 Atm. Überdruck (190° Naßdampftemperatur) und einer


Naßdampf Heißdampf
Dampftemperatur von 190°250° 300° 350° C
das spezifische Volumen
m3/kg 0·15560·1811 0·2016 0·2264

Mit der Überhitzung wächst das spezifische Volumen erheblich; bei einer Überhitzung von 100° C (von 190° auf 300°) beträgt die Zunahme


Heißdampf

d.h.[135] bei gleichem Dampfgewicht würde mit H. 30% Arbeit mehr geleistet werden können als mit Naßdampf, wenn beide Dampfarten sich bei ihrer Dehnung gleich verhalten würden. Letzteres ist nicht ganz der Fall. Der H. nimmt bei seiner Dehnung im Dampfzylinder an Druck schneller ab als der Naßdampf; es leistet deshalb bei sonst gleichen Verhältnissen ein gleiches Volumen H. etwas weniger Arbeit als das gleiche Volumen Naßdampf. Die Folge hiervon ist, daß zur Erzielung einer gleichen Arbeit bei einer Heißdampflokomotive die Zylinderfüllung größer sein muß als bei einer Naßdampflokomotive, oder sollen beide mit gleichen Füllungen arbeiten, so muß der Zylinderdurchmesser ersterer größer sein.

Aus der Zunahme des spezifischen Volumens ergibt sich, daß das Verhältnis der in Arbeit umgesetzten Wärmemenge zu der gesamten gebrauchten Wärme, d.i. der thermische Wirkungsgrad η einer Dampfmaschine, um so größer ist, je höher der Arbeitsdampf überhitzt wurde. Ist A das Wärmeäquivalent der Arbeitseinheit, A = 1/428 Wärmeeinheiten, L die geleistete Arbeit in m kg und Q die zur Dampferzeugung verbrauchte Menge von Wärmeeinheiten, so ist der thermische Wirkungsgrad


Heißdampf

Ist w der Wärmewert von 1 kg Dampf, v das zur Erzeugung der Arbeit L nötige Dampfvolumen vom spezifischen Gewichte γ, so ist


Heißdampf

Nimmt man bei den gleichen Leistungen L für Naßdampf und H. gleichartigen Verlauf der Dampfdehnung an, so ist


Heißdampf

Die thermischen Wirkungsgrade verhalten sich umgekehrt, wie die Produkte aus spezifischem Gewichte und Wärmewert, sie wachsen nahezu proportional mit der Dampftemperatur. Hieraus folgt, daß der theoretische Dampf- und Kohlenverbrauch mit zunehmender Überhitzung abnimmt. Es tritt eine Dampf- und Kohlenersparnis ein (s. Dampfarbeit).

Im Gegensatz zum Naßdampf ist H. ein schlechter Wärmeleiter; wenn dieser Umstand auch den Wärmedurchgang im Überhitzer bei der Erzeugung des H. ungünstig beeinflußt, so hat er doch den größeren Vorteil seiner wirtschaftlicheren Ausnutzung in den Dampfzylindern für sich.

Die spezifische Wärme des H. cp ändert sich mit der Spannungs- und Überhitzungstemperatur, sie nimmt mit letzterer zu. Während cp für gesättigten Dampf nach Zeuner im Mittel zu 0∙48 angenommen wird, nähert sich dieser Wert nach neueren Untersuchungen für H. bis zu 1. Im Mittel kann er für die Untersuchung der Wirtschaftlichkeit des H. für Arbeitsmaschinen zu 0∙6 angenommen werden.

Die zur Erzeugung von 1 kg überhitzten Dampfes aus Wasser von 0° C nötige Wärmemenge ist W1 = W + cp (t1t).

W = λ – q0 ist die zur Erzeugung von 1 kg gesättigten Dampfes nötige Wärmemenge, wobei λ den Wärmewert des gesättigten Dampfes, der aus den Dampftabellen von Regnault entnommen werden kann, und q0 die Flüssigkeitswärme des Speisewassers in Wärmeeinheiten bedeutet. t1 ist die Temperatur des überhitzten Dampfes, t die des gesättigten Dampfes, cp seine spezifische Wärme = 0∙6. Für 12 Atm. Überdruck und t1 = 300° C ist W1= 664∙6 + 0∙6 (300 – 190) = 664∙6 + 66 = 730∙6 Wärmeeinheiten, sie beträgt in diesem Falle 66/664∙6 = 1/10 der zur Verdampfung notwendigen Wärmemenge.

Für die Ermittlung der Überhitzeroberflächen ist dieser Nennwert jedoch zu klein, da vom Überhitzer auch noch das vom Kesseldampf mitgerissene Wasser verdampft werden muß.

Die Dehnung gesättigten Dampfes kann nach einer Linie angenommen werden, die für praktische Zwecke ausreichend genau durch pv = konstant bestimmt wird. Nach Untersuchungen an Heizdampfmaschinen erfolgt die Dehnung überhitzten Dampfes ebenfalls nach einer Linie, die durch Gleichung pvμ = konstant festgesetzt wird. Der Wert μ nimmt mit der Temperatur des H. zu, hängt jedoch auch von der Bauart des Zylinders ab. Versuche an Hochdruckzylindern von Dampfmaschinen mit dreifacher Dehnung ergaben bei gleicher Füllung μ = 0∙82 für gesättigten Dampf und μ = 1∙26 für H. von 300°.

Die wesentlichen, wirtschaftlichen Vorteile des H. gegenüber dem Naßdampf zur Erzeugung von Arbeit in Dampfmaschinen lassen sich zurückführen auf die Vermeidung der Niederschlagsverluste (Zylinderkondensation) und auf die Vergrößerung seines spezifischen Volumens bei steigender Überhitzung. Hieraus ergibt sich eine Ersparnis an Dampf, Wasser und Brennmaterial im Vergleich gleicher Naßdampfarbeit oder eine Vergrößerung der Arbeit, bei den Lokomotiven somit der Zugkraft,[136] bei gleicher Größe und gleichem Kohlenverbrauch.

Infolge dieser Ergebnisse ist die Verwendung des H. eine sehr ausgedehnte, sowohl bei ortsfesten Dampfmaschinen, bei denen von Schiffen und in der Neuzeit besonders bei Lokomotiven.

Schon 1832 berichtete Howard von einer 30% igen Dampfersparnis bei einer ortsfesten Anlage in Bermondsey. In den Fünzigerjahren des vorigen Jahrhunderts stellte der Physiker Hirn durch eingehende Versuche an einer einfachen Kondensationsmaschine durch Überhitzung Ersparnisse bis zu 23% fest. Bei allen diesen Versuchen, auch den späteren, ist mit der Steigerung der Überhitzung nicht über 250° C gegangen, da das zu jener Zeit benutzte organische Schmieröl (Rüböl) sich bei höheren Temperaturen zersetzte, auch für höhere Temperaturen noch keine brauchbaren Kolben, Schieber und Stopfbüchsen erfunden waren. Erst zu Beginn der Neunzigerjahre des vorigen Jahrhunderts zeigte der Zivilingenieur Schmidt in Kassel an ortsfesten Dampfmaschinen die großen wirtschaftlichen Vorteile, die durch Anwendung von H. von 320–350° C entstehen.

Nachdem zu Ende der Achtzigerjahre des vorigen Jahrhunderts säurefreie Mineralschmieröle von hoher Entzündungstemperatur in den Handel kamen, konnte Schmidt in Kassel seine Versuche mit H. praktisch verwerten.

Rimrott.

Quelle:
Röll, Freiherr von: Enzyklopädie des Eisenbahnwesens, Band 6. Berlin, Wien 1914, S. 135-137.
Lizenz:
Faksimiles:
135 | 136 | 137
Kategorien:

Buchempfehlung

Diderot, Denis

Rameaus Neffe

Rameaus Neffe

In einem belebten Café plaudert der Neffe des bekannten Komponisten Rameau mit dem Erzähler über die unauflösliche Widersprüchlichkeit von Individuum und Gesellschaft, von Kunst und Moral. Der Text erschien zuerst 1805 in der deutschen Übersetzung von Goethe, das französische Original galt lange als verschollen, bis es 1891 - 130 Jahre nach seiner Entstehung - durch Zufall in einem Pariser Antiquariat entdeckt wurde.

74 Seiten, 4.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Große Erzählungen der Hochromantik

Große Erzählungen der Hochromantik

Zwischen 1804 und 1815 ist Heidelberg das intellektuelle Zentrum einer Bewegung, die sich von dort aus in der Welt verbreitet. Individuelles Erleben von Idylle und Harmonie, die Innerlichkeit der Seele sind die zentralen Themen der Hochromantik als Gegenbewegung zur von der Antike inspirierten Klassik und der vernunftgetriebenen Aufklärung. Acht der ganz großen Erzählungen der Hochromantik hat Michael Holzinger für diese Leseausgabe zusammengestellt.

390 Seiten, 19.80 Euro

Ansehen bei Amazon