Ballistisches Pendel

[537] Ballistisches Pendel (erfunden von Benjamin Roberts 1740). Dasselbe ist ein schweres, um eine horizontale Achse drehbares Pendel, gegen das eine Geschützkugel abgeschossen wird, um die Geschwindigkeit zu bestimmen, mit der dieselbe das Rohr verläßt.

Es sei (s. Figur) S der Schwerpunkt des Pendels, dessen unterer Körperteil MN aus einem mit Erde gefüllten Karten besteht und in den die Kugel in der Richtung K A eindringt und dadurch das Pendel nötigt, sich um einen gewissen Ausschlagwinkel α um seine horizontale Achse O zu drehen. Ist ν die Geschwindigkeit, mit der eine Kugel von der Masse m eindringt, u die Geschwindigkeit derselben am Ende des Stoßes, von wo sie mit dem Pendel zusammen ein System bildet, F aber die sie treibende Kraft, so hat man nach dem Satze über die Bewegungsgrößen (oder Momentankräfte)


Ballistisches Pendel

oder wenn f der Mittelwert von F während der Stoßzeit ϑ ist,

m(vu) = fϑ.

Durch diese Momentanwirkung wird das System eine gewisse Winkelgeschwindigkeit ω um die Achse O erlangen, und zwar ist

Mk2 = lfϑ oder Mk2ω = ml(vu),

wenn M die Gesamtmasse, k der Trägheitsradius um die Achse O und O A = l ist. Hieraus folgt v = u + (Mlω)/m oder, da u = ist,


Ballistisches Pendel

Bilden wir jetzt die Gleichung der lebendigen Kraft des Systems. Diese ist null, wenn dasselbe den Ausschlagwinkel α erreicht hat, und besteht zu Anfang aus der lebendigen Kraft Mk2ω2 des Pendels und ml2ω2 der Kugel; ihr Wert ist daher zu Anfang

(Mk2 + ml2)ω2.

Die Arbeit der Schwere am Pendel ist M g k, wenn h = a(1 – cosα) die Höhe SH bedeutet, auf die der Schwerpunkt gehoben wird; die Arbeit der Schwere an der Kugel ist – m g h', wo h'/h = l/a, also – m g h' = – m g l h/a wird. Demnach ist die Gesamtarbeit der Schwere


Ballistisches Pendel

und wird die Gleichung der lebendigen Kraft


Ballistisches Pendel

Diese Gleichung liefert in Verbindung mit


Ballistisches Pendel

die Größen ω und v, deren letztere zu bestimmen die Aufgabe war. Es wird:


Ballistisches Pendel

Damit die Achse O keine Erschütterungen erleide, welche die Genauigkeit der Beobachtung des Winkels α beeinträchtigen können, muß A der Schwingungspunkt des Pendels, d.h. O A = l die Länge des einfachen Pendels sein, das mit dem vorliegenden physischen Pendel gleiche Oszillationsdauer hat, nämlich l = a + (k20)/a, wo k0 der Trägheitsradius für die durch S zur Achse O parallel gelegte Achse ist. Den Winkel α beobachtet man mit Hilfe einer am tiefsten Teile des Pendels angebrachten Spitze.


Literatur: Cranz, C., Kompendium der theoretischen äußeren Ballistik, Leipzig 1896, S. 421.

(Schell) Finsterwalder.

Ballistisches Pendel
Quelle:
Lueger, Otto: Lexikon der gesamten Technik und ihrer Hilfswissenschaften, Bd. 1 Stuttgart, Leipzig 1904., S. 537.
Lizenz:
Faksimiles:
Kategorien:

Buchempfehlung

Haller, Albrecht von

Versuch Schweizerischer Gedichte

Versuch Schweizerischer Gedichte

»Zwar der Weise wählt nicht sein Geschicke; Doch er wendet Elend selbst zum Glücke. Fällt der Himmel, er kann Weise decken, Aber nicht schrecken.« Aus »Die Tugend« von Albrecht von Haller

130 Seiten, 7.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Große Erzählungen der Frühromantik

Große Erzählungen der Frühromantik

1799 schreibt Novalis seinen Heinrich von Ofterdingen und schafft mit der blauen Blume, nach der der Jüngling sich sehnt, das Symbol einer der wirkungsmächtigsten Epochen unseres Kulturkreises. Ricarda Huch wird dazu viel später bemerken: »Die blaue Blume ist aber das, was jeder sucht, ohne es selbst zu wissen, nenne man es nun Gott, Ewigkeit oder Liebe.« Diese und fünf weitere große Erzählungen der Frühromantik hat Michael Holzinger für diese Leseausgabe ausgewählt.

396 Seiten, 19.80 Euro

Ansehen bei Amazon