Hyperboloīd

[707] Hyperboloīd (griech.), Fläche zweiter Ordnung wie das Ellipsoid (s. d.).

Fig. 1. Zweischaliges Hyperboloid.
Fig. 1. Zweischaliges Hyperboloid.

Am einfachsten ist das Rotationshyperboloid, das man erhält, wenn man sich eine Hyperbel (s. d.) um eine ihrer Achsen gedreht denkt; je nachdem man die Hauptachse oder die Nebenachse als Drehachse benutzt, erhält man ein zweischaliges oder einschaliges Rotationshyperboloid. Das einschalige wird von jeder zur Drehachse senkrechten Ebene in einem Kreise geschnitten, beim zweischaligen dagegen ist jeder zwischen den Scheiteln der erzeugenden Hyperbel liegende Punkt der Drehachse so beschaffen, daß eine durch ihn gehende, zur Drehachse senkrechte Ebene die Fläche gar nicht trifft, die beiden in den Scheiteln auf der Drehachse senkrecht stehenden Ebenen haben mit der Fläche nur diese Scheitel gemein, während alle andern auf der Drehachse senkrechten Ebenen gleichfalls Kreise ausschneiden.

Fig. 2. Einschaliges Hyperboloid.
Fig. 2. Einschaliges Hyperboloid.

Denkt man sich ein Rotationshyperboloid so zusammengedrückt, daß aus den besprochenen Kreisen Ellipsen werden, so erhält man eine deutliche Vorstellung von dem allgemeinen, zweischaligen (Fig. 1) oder einschaligen H. (Fig. 2), die Gerade, die beim Rotationshyperboloid Drehachse war, heißt dann beim allgemeinen H. Hauptachse.

Fig. 3. Ellipsoid.
Fig. 3. Ellipsoid.

Das zweischalige H. ist in jedem seiner Punkte gekrümmt wie ein Ellipsoid (Fig. 3), das zweischalige dagegen ist in jedem Punkte sattelförmig gekrümmt.

Fig. 4. Die Geraden des einschaligen Hyperboloids.
Fig. 4. Die Geraden des einschaligen Hyperboloids.

Beim einschaligen heißt die kleinste der Ellipsen, die von einer zur Hauptachse senkrechten Ebene ausgeschnitten wird (in Fig. 2 ist sie eingezeichnet an der Stelle, wo die Fläche am stärksten eingeschnürt ist), die Kehlellipse. Auf dem einschaligen H. gehen durch jeden Punkt zwei gerade Linien, die ganz auf der Fläche liegen, es gehört also zu den Geradlinigen Flächen (s. d.). Die auf der Fläche liegenden Geraden bilden zwei Scharen, die in Fig. 4 angedeutet sind. Das einschalige Rotationshyperboloid kann man auch dadurch erhalten, daß man sich eine Gerade um eine zu ihr windschiefe Achse gedreht denkt.

Quelle:
Meyers Großes Konversations-Lexikon, Band 9. Leipzig 1907, S. 707.
Lizenz:
Faksimiles:
Kategorien:

Buchempfehlung

Tschechow, Anton Pawlowitsch

Drei Schwestern. (Tri Sestry)

Drei Schwestern. (Tri Sestry)

Das 1900 entstandene Schauspiel zeichnet das Leben der drei Schwestern Olga, Mascha und Irina nach, die nach dem Tode des Vaters gemeinsam mit ihrem Bruder Andrej in der russischen Provinz leben. Natascha, die Frau Andrejs, drängt die Schwestern nach und nach aus dem eigenen Hause.

64 Seiten, 4.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Große Erzählungen der Frühromantik

Große Erzählungen der Frühromantik

1799 schreibt Novalis seinen Heinrich von Ofterdingen und schafft mit der blauen Blume, nach der der Jüngling sich sehnt, das Symbol einer der wirkungsmächtigsten Epochen unseres Kulturkreises. Ricarda Huch wird dazu viel später bemerken: »Die blaue Blume ist aber das, was jeder sucht, ohne es selbst zu wissen, nenne man es nun Gott, Ewigkeit oder Liebe.« Diese und fünf weitere große Erzählungen der Frühromantik hat Michael Holzinger für diese Leseausgabe ausgewählt.

396 Seiten, 19.80 Euro

Ansehen bei Amazon