[163] Hyperbelräder sind an Stelle von Kegelrädern anzuwenden, wenn die Wellen beider Zahnräder aneinander vorbeigehen müssen. Bei Uebertragung großer Kräfte vermeidet man sie, weil die Zähne sich nicht nur in der Richtung vom Fuß zum Kopf reiben, sondern auch in der Breitenrichtung aneinander gleiten und darum bei starkem Zahndruck großen Reibungsverlust und schnelle Abnutzung verursachen. Die Zähne sind der Breite nach geradlinig verjüngt, stehen aber nicht zentrisch, sondern schräg.
Spannt man zwischen zwei gleichen konaxialen Reifen parallele Fäden, so daß diese zunächst in einer Zylinderfläche liegen, und dreht den einen Reifen um seine Achse um 180°, so bilden die Fäden eine Kegelfläche; dreht man aber weniger als 180°, so ist die von geradlinigen Fäden umschriebene Fläche ein Hyperboloid, weil ihre Meridianschnitte Hyperbeln darstellen. Der kleinste Kreis in der Mitte zwischen beiden Reifen heißt Kehlkreis. Die geraden Linien der gespannten Fäden geben die gerade Berührungslinie zweier aneinander gelegten Hyperboloide und zugleich die Richtung der Zähne eines Hyperbelrades an. Läßt man zwei sich berührende Hyperboloide um ihre Achten rotieren, indem man sich anstatt der Fäden Zähne denkt, so muß die Geschwindigkeit v senkrecht zur geraden Berührungslinie für beide Räder dieselbe sein. In der Umfangsrichtung dagegen sind die Zahngeschwindigkeiten v1 und v2 verschieden, je nach dem Winkel zwischen der Geraden und den Umfangen der beiden Räder. Es sei weiterhin vorausgesetzt, daß die Achsen einen Winkel von 90° bilden und im Abstande a (Fig. 1 und 3) aneinander vorbeigehen, daß ferner das Uebersetzungsverhältnis Z1 : Z2 = n2 : n1 (z.B. = 1 : 2 in der Figur) gegeben sei. In Fig. 2 geht, der Bildebene parallel (also unverkürzt), die gerade Berührungslinie C D der Hyperboloide von dem scheinbaren Schnittpunkte C der Achsen aus, und zwar so, daß D A : D B = Z1 : Z2 ist. Durch die Annahme des Punktes D ist die Größe der Räder bestimmt. Am kleinsten werden die Kehlkreise mit den Radien k1 und k2.[163] Nach Fig. 2 (unterhalb des in Ansicht gezeichneten, obenaufliegenden Kehlrades) sind deren Umfangsgeschwindigkeiten v2 = v/sin a und v1 = v/cos α, folglich ist:
und
In dem Verhältnis k1 : k2 ist die Achsenentfernung a in Fig. 1 und 3 zu teilen. Als Tangenten an den so erhaltenen Kehlkreisen bestimmen die Projektionen von C D in Fig. 1 und 3 die Richtungen der Zähne. In dem Abstande des in Fig. 3 projizierten Punktes D' von der Achse des Rades erhält man den Radius R2 des äußeren Teilkreises. Hat man weiter den Punkt d in Fig. 2, der Zahnbreite D d entsprechend, angenommen, so ergibt sich aus der Projektion d' in Fig. 3 der Radius r2 des inneren Teilkreises. Trägt man diese Radien R2 und r2 und außerdem noch beliebige andre ebenso konstruierte Radien in Fig. 2 ein, so erhält man die Punkte der Hyperbel des zweiten Rades und ebenso aus Fig. 1 die des ersten Rades. Senkrecht zur Zahnrichtung C D' in Fig. 3 ist die für beide Räder gleiche und für die Zahnstärke maßgebende Teilung t0 = 2 π + C' D'/Z2 aufgetragen. Weil nun aber die Zähne am äußeren Umfang schräg unter dem Winkel, den C' D' mit R2 bildet, abgeschnitten sind, wird die am Rade meßbare Teilung t2 im Verhältnis R2 : C' D' größer als t0. Entsprechend ergibt sich aus Fig. 1 die Teilung t1 für das kleine Rad. Hiernach werden die Umfangsteilungen beider Räder verschieden. Errichtet man in Fig. 2 auf C D in D ein Lot, so erhält man in dessen Schnittpunkten auf den Achsen die Spitzen M1 und M2 der Kegel, welche die Zahnkränze außen begrenzen. In der Abwicklung dieser Kegel (Fig. 2, rechts) sind die Zahnkurven zu konstruieren. Hiernach lassen sich die Begrenzungslinien der Zähne in die Räder einzeichnen. An Stelle der Hyperboloide, welche die Kopfflächen und den Zahnboden bilden, wird man Kegelflächen annehmen.
Die in den Figuren eingezeichneten Kehlkreisräder sind Schraubenräder. Wegen der starken Steigung der Zähne am kleineren Rade wird dieses das größere nicht zu treiben vermögen, wohl aber umgekehrt von dem größeren getrieben werden können. Zur Anwendung kommen hyperbolische Räder beispielsweise an den Spindelbänken für Baumwollspinnerei (s. Bd. 1, S. 610).
Literatur: [1] Reuleaux, Der Konstrukteur, Braunschweig 188289, S. 549554. [2] Keller, Triebwerke, München 1904, S. 163170. [3] Herrmann-Weisbach, Mechanik, Braunschweig 1876, 3. Teil, 1. Abt., S. 228237.
Lindner.
Buchempfehlung
Jean Pauls - in der ihm eigenen Metaphorik verfasste - Poetologie widmet sich unter anderem seinen zwei Kernthemen, dem literarischen Humor und der Romantheorie. Der Autor betont den propädeutischen Charakter seines Textes, in dem er schreibt: »Wollte ich denn in der Vorschule etwas anderes sein als ein ästhetischer Vorschulmeister, welcher die Kunstjünger leidlich einübt und schulet für die eigentlichen Geschmacklehrer selber?«
418 Seiten, 19.80 Euro
Buchempfehlung
Biedermeier - das klingt in heutigen Ohren nach langweiligem Spießertum, nach geschmacklosen rosa Teetässchen in Wohnzimmern, die aussehen wie Puppenstuben und in denen es irgendwie nach »Omma« riecht. Zu Recht. Aber nicht nur. Biedermeier ist auch die Zeit einer zarten Literatur der Flucht ins Idyll, des Rückzuges ins private Glück und der Tugenden. Die Menschen im Europa nach Napoleon hatten die Nase voll von großen neuen Ideen, das aufstrebende Bürgertum forderte und entwickelte eine eigene Kunst und Kultur für sich, die unabhängig von feudaler Großmannssucht bestehen sollte. Dass das gelungen ist, zeigt Michael Holzingers Auswahl von neun Meistererzählungen aus der sogenannten Biedermeierzeit.
434 Seiten, 19.80 Euro