Parallelogramm

[668] Parallelogramm (v. gr.), 1) jede von vier geraden [668] Linien (Seiten) begrenzte Ebene, wenn je zwei Seiten (Gegenseiten), einander parallel sind. Die geraden Verbindungslinien je zweier gegenüberliegender Ecken (Gegenwinkel) heißen Diagonalen. Aus der Congruenz der beiden durch eine Diagonale geschiedenen Dreiecke folgt ferner, daß je zwei Gegenseiten u. je zwei Gegenwinkel einander gleich sind. Auch gilt umgekehrt, daß, wenn in einem Viereck ein Paar Gegenseiten gleich u. parallel sind, od. wenn je zwei Gegenseiten einander gleich sind, das Viereck ein P. ist. Sind alle vier Seiten eines P-s einander gleich, die Winkel aber ungleich, so heißt es ein Rhombus, sind aber auch die Winkel einander gleich, also rechte, so heißt es Quadrat, sind die Winkel zwar rechte, aber die Seiten ungleich, so heißt es Rechteck. Im Rechteck sind die beiden Diagonalen einander gleich, im Rhombus schneiden sie sich unter rechten Winkeln, im Quadrat ist beides der Fall. Da P-e von gleichen Grundlinien u. Höhen einander gleich sind, so läßt sich jedes P. in ein ihm gleiches Rechteck verwandeln. Nun sind zwei Rechtecke im zusammengesetzten Verhältniß ihrer anstoßenden Seiten. Ist daher das eine dieser Rechtecke ein Quadrat, dessen Seite als Längeninhalt betrachtet wird, u. sind die Seiten des anderen vermittelst der Zahlen durch diese Einheit ausgedrückt, so folgt, daß der Inhalt des letzteren durch das Product dieser beiden Zahlen ausgedrückt ist, wenn man demselben jenes Quadrat zur Einheit gibt. Hierauf beruht die Ausmessung aller Flächen. 2) P. der Kräfte, das Gesetz, nach welchem man für zwei gleichzeitig auf einen Punkt unter einem Winkel wirkende Kräfte die resultirende Kraft bestimmt. Es lautet: wirken zwei Kräfte gleichzeitig auf einen Punkt nach Richtungen, welche einen Winkel mit einander bilden, u. stellt man ihre Größe u. Richtung graphisch durch begrenzte gerade Linien dar, welche man nachher zum Parallelogramm ergänzt, so repräsentirt die durch den gemeinschaftlichen Angriffspunkt gehende Diagonale nach Größe u. Richtung die Resultante (Mittelkraft) jener beiden Kräfte. Gewöhnlich beweist man diesen wichtigen Lehrsatz durch die Betrachtung, daß ein Körper, welcher vermöge zweier Kräfte einzeln genommen die beiden Seiten eines Parallelogrammes in einer gewisser Zeit durchlaufen haben würde, durch das Zusammenwirken beider Kräfte (Componenten) die Diagonale des Parallelogrammes beschreiben müsse, u. macht dies etwa durch die Bewegung eines Schiffes anschaulich, welches durch den Wind für sich in einer gewissen Zeit quer über Strom, durch den Strom für sich in derselben Zeit eine Strecke abwärts, durch beides zugleich nach der Diagonale getrieben wird. Da nun die Größe einer Kraft der Länge des in einer gewissen Zeit beschriebenen Weges proportional ist, so sind die beiden gegebenen Kräfte zusammengenommen der durch die Diagonale dargestellten Kraft gleich; dies ist auch die Form des Beweises bei Newton (in den Principia mathematica) u. bei Varignon (Nouvelle mécanique 1725). Da jedoch der Satz, streng genommen, ein Satz der Statik ist, indem die Resultante das Entgegengesetzte derjenigen Kraft ist, welche den beiden gegebenen Kräften das Gleichgewicht hält, so wird durch jene Zusammensetzung der Bewegung u. durch die Behauptung, daß die Größe einer Kraft der Länge des in gewisser Zeit beschriebenen Weges proportional sei, etwas Fremdartiges eingemischt, u. viele Mathematiker haben sich daher bemüht, das Theorem unabhängig von der Bewegung zu beweisen. Dabei stützen sich die Beweise von Duchayla, Poinsot u. Möbius auf die Verlegung des Angriffspunktes einer Kraft nach einem beliebigen anderen Punktihrer Richtungslinie unter der Annahme, daß immer eine solche Verlegung, aber auch nur eine solche Verlegung zulässig sei, wodurch, wie es scheint, gleichfalls etwas der Natur der zu beweisenden Sache Fremdartiges beigemischt wird. Andere, wie Foncének, D'Alembert, Poisson, Laplace, Pontécoulant gehen von der Voraussetzung aus, daß die Größe der Resultante zweier gleicher Kräfte eine Function des von ihnen eingeschlossenen Winkels, od. resp. wenn die Kräfte einen rechten Winkel bilden, eine Function des Größenverhältnisses der Kräfte sei, eine Annahme, welche insofern zweifelhaft genannt werden kann, als noch nicht bewiesen ist, daß die Resultante für alle verschiedenen Winkel od. für alle verschiedenen Größenverhältnisse nach demselben Gesetze abhängig sein soll. Am schärfsten scheint der Beweis von Daniel Bernoulli zu sein, welcher in etwas abgekürzter Form von D'Alembert wiedergegeben ist. So wie man die Bestimmung der Resultante zweier gegebener Kräfte auch das Zusammensetzen der Kräfte nennt, so bezeichnet man durch Zerfällen einer gegebenen Kraft die Bestimmung der beiden Componenten, als deren Resultante jene gedacht werden kann; dies ist im Allgemeinen auf unendlich viele Weisen möglich, doch wird die Aufgabe dann eine bestimmte, nur auf eine Weise lösbare, wenn die Richtungen der Componenten vorgeschrieben sind. Mehre auf einen Punkt wirkende Kräfte werden zusammengesetzt, indem man erst für zwei die Resultante sucht, dann für diese u. eine dritte Kraft u.s.f. Vgl. Westphal, Demonstrationum compositionis virium expositio, Gött. 1817; C. Jacobi, Praecipuorum inde a Newtono conatuum, compositionem virium demonstrandi, recensio, ebd. 1817; Matzka, Ein neuer Beweis des Kräftenparallelogramms, Prag 1856.

Quelle:
Pierer's Universal-Lexikon, Band 12. Altenburg 1861, S. 668-669.
Lizenz:
Faksimiles:
668 | 669
Kategorien: